SOMMAIRE

AVA	NT-PROPOS	p. V
	CHAPITRE 1	
	DYNAMIQUE FERROVIAIRE ET SOUS-STATIONS	
1.1	Dynamique ferroviaire	p. 3
1.1.1	Efforts nécessaires en marche	p. 3
1.1.2	Notion d'adhérence	p. 4
1.1.3	Caractéristique effort/vitesse	p. 6
1.2	Alimentation du réseau de traction électrique	p. 8
1.2.1	Généralités	p. 8
	1.2.1.1 Historique et évolution technique	p. 8
	1.2.1.2 Évolution des puissances	p. 9
1.2.2	Définition de la fonction « alimentation »	p. 9
	Dimensionnement des installations fixes	p. 9
1.2.4	Caractéristiques requises pour les installations fixes	p. 10
	1.2.4.1 Alimentation en tension continue 1,5 kV	p. 10
	1.2.4.2 Alimentation en tension monophasée 25 kV à 50 Hz	p. 13
	1.2.4.3 Commande centralisée des installations	p. 17
	CHAPITRE 2	
	CONVERTISSEURS ET MOTEURS	
2.1	Compatibilité électromagnétique dans le domaine ferroviaire	p. 20
2.1.1	Généralités	p. 21
	Perturbations générées par le train sur l'environnement	p. 23
	2.1.2.1 Perturbations conduites (f < 20 kHz)	p. 23
	2.1.2.2 Couplage par champ magnétique (f < 5 kHz)	p. 24
	2.1.2.3 Rayonnement électromagnétique radiofréquence	p. 25
2.1.3	Perturbations extérieures subies par le train	p. 25
	2.1.3.1 Perturbations conduites (f < 20 kHz)	p. 26
	2.1.3.2 Rayonnement électromagnétique radiofréquence	p. 26
2.2	Semiconducteurs de puissance	p. 27
	Performances des composants utilisés	p. 27 p. 27
	Techniques de refroidissement	p. 27 p. 28
	•	•
2.3	Convertisseur d'entrée sous caténaire continue	p. 29
2.3.1	Caractéristiques spécifiques au ferroviaire	p. 29
	2.3.1.1 Synthèse des configurations de hacheur	p. 30
	2.3.1.2 Compatibilité avec la signalisation au sol	p. 31
2.3.2	Structures de hacheur	p. 32
	2.3.2.1 Hacheur à thyristor	p. 32
	2.3.2.2 Hacheur à thyristor GTO	p. 33
2.4	Convertisseur d'entrée sous caténaire monophasée	p. 34
2.4.1	Pont monophasé à commutation naturelle	p. 34
	2.4.1.1 Facteur de puissance	p. 35
	2.4.1.2 Tension moyenne maximale redressée	p. 36
	2.4.1.3 Impédance équivalente de l'alimentation	p. 37
	2.4.1.4 Ondulation du courant continu	p. 37
	2.4.1.5 Amélioration du facteur de puissance avec des filtres passifs	p. 37

2.4.2	Pont monophasé à commutation forcée	p.	38
	2.4.2.1 Caractéristiques générales	•	38
	2.4.2.2 Principe de fonctionnement du PMCF en MLI	p.	40
	2.4.2.3 Association de plusieurs PMCF	р.	41
2.5	Moteur synchrone autopiloté	ρ.	43
	Caractéristiques spécifiques au ferroviaire	•	43
	2.5.1.1 Coefficient d'équivalence	•	43
	2.5.1.2 Diagramme de Blondel		44
	2.5.1.3 Puissance et rendement	p.	45
2.5.2	Alimentation par un onduleur de courant	p.	45
	2.5.2.1 Structure de l'onduleur de courant et allure des grandeurs statoriques	p.	46
	2.5.2.2 Allure du couple électromagnétique	•	46
	2.5.2.3 Analyse de la commutation naturelle	•	47
	2.5.2.4 Analyse de la commutation assistée	•	50
2.5.3	Caractéristiques de fonctionnement	•	53
	2.5.3.1 Fonctionnement en traction	•	53
	2.5.3.2 Fonctionnement en freinage	p.	53
2.5.4	Applications ferroviaires	р.	54
	2.5.4.1 TGV-Atlantique	•	54
	2.5.4.2 Locomotive BB 26000	, р.	56
2.6	Moteur asynchrone	n	58
	Caractéristiques spécifiques au ferroviaire		58
2.0.1	2.6.1.1 Relations entre les fréquences	•	59
	2.6.1.2 Équations électriques et schémas équivalents	•	59
	2.6.1.3 Puissance et rendement	•	61
	2.6.1.4 Couple électromagnétique		61
	2.6.1.5 Caractéristiques de fonctionnement du moteur		62
	2.6.1.6 Association de moteurs en parallèle	•	63
2.6.2	Alimentation par un onduleur de courant	•	64
	2.6.2.1 Principe	р.	64
	2.6.2.2 Allure du couple électromagnétique	р.	65
	2.6.2.3 Caractéristiques de commande de l'onduleur de courant	р.	65
2.6.3	Alimentation par un onduleur de tension	p.	66
	2.6.3.1 Structure de l'onduleur de tension	p.	66
	2.6.3.2 Allure des tensions statoriques en pleine onde	p.	67
	2.6.3.3 Réglage de la tension et de la fréquence d'alimentation du moteur	p.	67
	2.6.3.4 Allure du couple électromagnétique	p.	69
	2.6.3.5 Stratégie de commande du moteur	p.	69
2.6.4	Applications ferroviaires	p.	75
	2.6.4.1 Automotrice Z 20500	p.	75
	2.6.4.2 TGV Eurostar	p.	77
	2.6.4.3 Locomotive BB 36000	p.	81
	CHAPITRE 3		
	PERSPECTIVES D'ÉVOLUTION		
ANNEXES			87
Bibliographie		p.	89
	nalisation	n.	89
	ctives		89
	х	•	91