

Pricing kilometres in The Netherlands

- Prof. Dr. Henk Meurs
 - Radboud Universiteit Nijmegen/
 - MuConsult Amersfoort

µ consu<mark>lt</mark>

Objective: Share the intended Dutch approach to pricing road transport

- Content
 - Introduction

AH is, His A

- Current tax system
- History of road pricing in the Netherlands
- Characteristics of the system proposed
- Effects on car fleet, mobility, emissions and revenues
- Acceptance of the measures by the Dutch population;
- Current state of affairs;
- Conclusions
- Limitation to transport of persons; no attention to freight

Current tax system cars

UCONSUL

- Purchase tax on new cars (BPM):
 - 2008: 25% of new price of cars
 - Revenues: euro 3.4 billion annually
- Vehicle ownership tax (average Euro 630 per year)
 - yearly tax on ownership with regional surcharge
 - Variation by weight, fuel type, province
 - Revenues: euro 4.0 billion (including 1.1 billion reg. surcharge)
- Fuel taxes (excluded from km-price system)
 - Revenues 6.9 billion
 - Gasoline/LPG taxes mild
- Major revision in 2009 (up to 2012):
 - Purchase taxes based on emissions (CO_2 , etc)
 - Small shift from purchase taxes to ownership taxes

Consequences current tax system

- Taxes to large extent based on ownership of cars
- Overconsumption of car kilometres
- Car use causes main problems:

AHij, HisA

- Congestion
- Safety

µ CONSULI

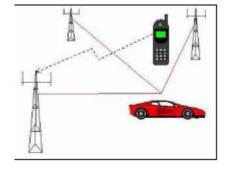
- Pollution
- Equity issues:
 - Heavy users pay too little
 - Small users too much
- Hence shift in tax system necessary:
 - Pay different for mobility
 - Pricing of kilometres rather than ownership

µconsult 🗡

History of road pricing in The Netherlands

- Previous attempts:
 - 1988: Road Pricing I
 - 1992: Rush-Hour disc
 - 1994: Road pricing II
 - 1999: Rush-hour surcharge and road pricing in the form of tollbooths on all access and exit roads of the four major cities in the Randstad conurbation (road pricing)
 - 2001: convert fixed government charges to a payment per kilometre by no later than 2006
 - 2005 till now: Kilometre charge

Crucial step: Nouwen committee (2004)


Participants:

UCONSULI

- Regional and local authorities
- CEO's private sector

AHij, Tist

- Major pressure groups
 - Economic, environmental, motorists, etc
- Study of 10 pricing alternatives
- Result:
 - Joint proposal for main characteristics of system
 - Formulation of preconditions eg:
 - No increase in revenues
 - Revenues to infra budget
 - No excessive administrational costs
 - Privacy guaranteed
 - Support in society

Major alternatives investigated by Nouwen

AHij, Hi, A

µ consult

	Decrease travel time loss (hours)	Environment and safety	Costs (Investments)	Introduction	Welfare (Euro, billions)
1 Congestion charge at busy times and places	Up to 55%	Tot 3%	200 mio	2009-2011	1,3
2 Fixed charges per kilometre	Up to 40%	Tot 10%	3 miljard	2011-2016	1
3 Toolbooths (6 places)	Ca. 15%	Ca. 0%	100 mio	2009 and further	Ca. 0
4 Fuel tax increase	Ca. 15%	Up to 10%	0	2006	2,4

Proposals Nouwen and subsequent joint fact finding

- Charge kilometres driven with cars with base price;
- Surcharge on congested roads
- Vary price by type of car:
 - Environmental characteristics
- Introduce system over period of time (eg 6 years):
 - Limited capacity wrt installation No distortion of car market

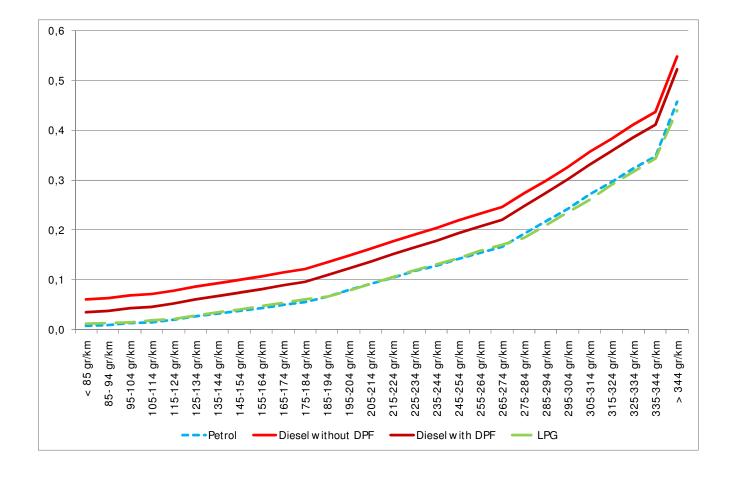
Political discussions:

UCONSUL:

- Multiple objectives (congestion, environment and support)
- Relate price to emissions (CO_2, etc)
- Replacement of all ownership taxes vs partial reduction
- Costs of system (< 5% of revenues)</p>

Price per kilometer

- An average price of 6.7 cents per kilometer.
- Differentiation based on:
 - CO₂


UCONSULI

- Fuel type
- Particle filters (diesel)
- Dispersion according to the existing road taxes and purchase taxes.

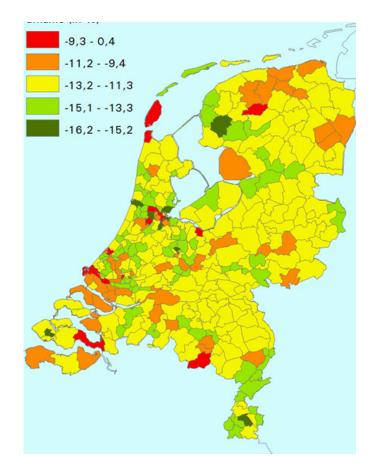
Kilometre charge: base price levels

Forecasting effects

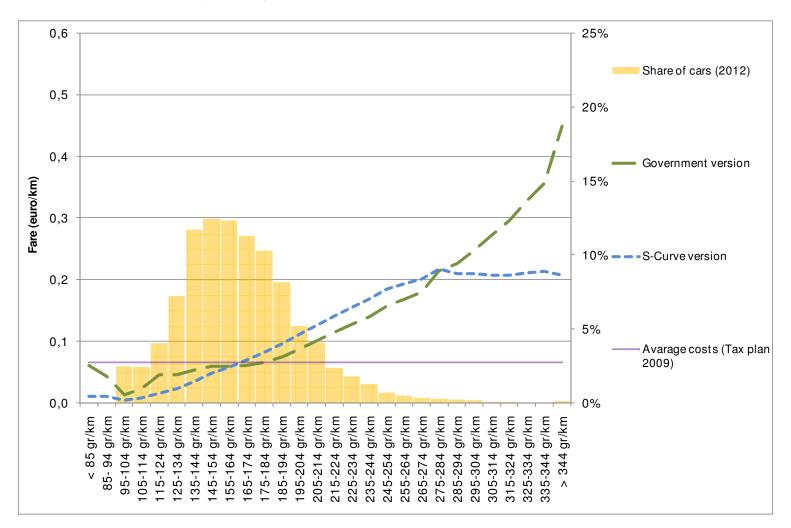
(AHij, Hi, Aj,

Mobility:

µ CONSULT


- Number of kilometres driven: -12-15%
- Travel time losses: 40-60%
- Kilometres on public transport: + 6%
- Environmental:
 - ▷ CO₂ : -10%
 - Particulate matter: 10%
 - NOx : 19%
- Other:
 - Traffic safety: + 7%
 - Car fleet: +2-3%

Regional differences limited eg urban/rural


AHij, Hi, Aj

µ CONSULT

Two alternatives price systems: selected vs environmental optimized

Effect of two alternatives (2030):

	Reference	Kilometre Charge		
	Tax plan	Government	S-Curve	
2020				
Total milage (x10 ⁹)	130	114	115	
Average CO ₂ /km	158	160	158	
Total CO ₂ (MegaTon)	20,8	18,6	18,5	
		(-10,5%)	(-11,1%)	
2030				
Total milage (x10 ⁹)	144	126	128	
Average CO ₂ /km	142	146	144	
Total CO ₂ (MegaTon)	20,6	18,8	18,6	
		(-8,7%)	(-9,7%)	

- S-curve compared to government proposal:
 - More effective on average and total CO₂ (cleaner cars have lower charge, dirty cars higher)
 - Less effective on total kilometers (lower charge for more cars means less reduction in milage)

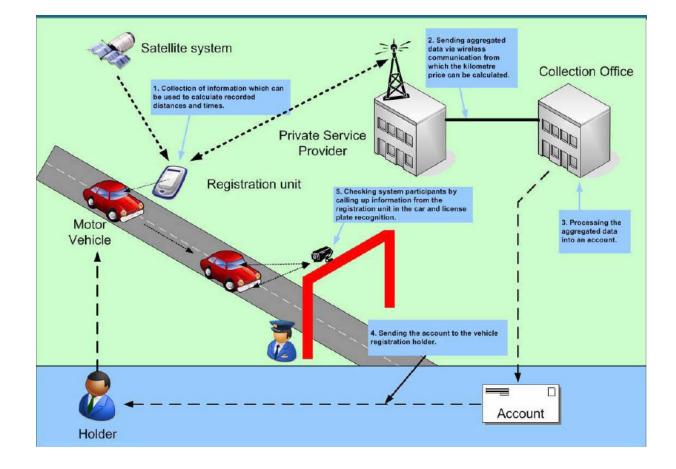
The system characteristics

Major technical characteristics:

AHij, He, A

- OBU using satellite technologymandatory
- Start with GPS; then Galileo
- Two tracks:

µ CONSULI


- Private service providers
 - Competition between suppliers
 - End to end, including all services ?
 - Optional Value added services
 - Travel information
 - Assurance services
- Public track
 - Limited services
 - Back up for private market failure
 - Transition period

Communication aspects with GPS and GSM

AH ij, t

UCONSULI

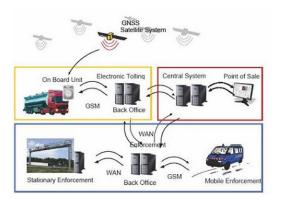
Major implementation issues

AHij, Hi, A

Privacy:

UCONSULI

- Public track:
 - Smart On board unit: calculates and communicates trip totals
 - Once a week sends totals to collection office
- Private track:
 - If users permits more information (value added services)
 - Totals to collection office
- Enforcement:
 - Trusted Element (compare SIM-card on mobile)
 - Register interuptions and check
 - Mobile and fixed checks
- System faillure:
 - Repair obligation within weeks
 - Estimation of kilometres driven
 - Owner checks registration on PC


Costs

µ CONSULI

- Condition of parliament: operational costs less than 5% and investments costs as low as possible
- Outcome:
 - Implementation3.8 billion (Incl. project costs)
 - Exploitation1.8 billion (during scaling-up period)
 - Total(u/t 2018)5.6 billion, including 1.4 billion risks
- Main start up cost drivers for government:
 - Unit Price OBE

AHij, Hi, A

- Installation time per vehicle
- 9 mio vehicles

Mobility projects 2009-2012

vith the new technology (including se

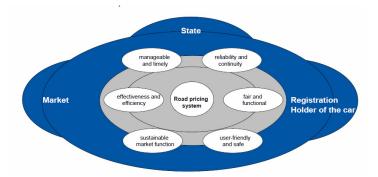
e opportunity to gain exper

ori.

eratid

mmerci

LICONSU


- Mobility projects in six urban regions aimed at:
 - deal with traffic jams in the short term (decrease number of car kilometres in rush hours by a minimum of 5%).
 - make motorists and employers more aware of possible options (telecommuting, public transport, earlier/later working hours).
 - assess motorist behaviour.
 - provide operational experience with the new technology (including satellite technology).
 - give the commercial sector the opportunity to gain experience with the system.
- Use GPS/GSM systems and pay users to avoid peak hours/routes
- 2000-10.000 participants differing by region

Public acceptability

UCONSULI

AHij, Hi, A

- Conditions of Nouwen committee are met eg:
 - Revenues to infra fund (roads and public transport)
 - Privacy and enforcement issues
 - Operational costs < 5% (expected)</p>
- Public support measured by Motorist organization:
 - 68% supports principles
 - But
 - No peak hour surcharge
 - Alternatives to car usage in peak?
 - Technical system:
 - Privacy
 - Security of information
 - Technical faillures
- Communication and demonstration important

Current state of affairs

µ CONSUL

- Government fell in March, new elections in June
- Stop further developments until new government is installed
- Right wing and socialist parties oppose system
- Center/center-left supports system
- Mobility projects continued

Conclusions

UCONSULI

- Pricing kilometres rather than ownership
 - Pay different for mobility, no more
 - Base price and peak surcharge
- Pricing kilometers has intended effects:
 - Mobility: less kilometres and congestion
 - Environment: less CO2 and other pollutants
 - >60% of owners benefit
- Technical feasible
 - GPS and GSM technology
 - Private and public back up tracks
 - Value added services
- Public acceptance
 - Principles supported
 - Limited confidence in technology and government