COMPOUND LOCOMOTIVES

BY

ARTHUR TANNATT WOODS M. M. E. (Cornell Univ.)

LATE ASSISTANT ENGINEER UNITED STATES NAVY; PROFESSOR OF MECHANICAL ENGINEERING, UNIVERSITY OF ILLINOIS, AND PROFESSOR OF DYNAMIC ENGINEERING, WASHINGTON UNI-VERSITY; MEMBER OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS; MEMBER OF THE AMERICAN SOCIETY OF NAVAL ENGINEERS; ASSOCIATE MEMBER OF THE AMERICAN RAILWAY MASTER MECHANICS

ASSOCIATION, ETC., ETC.

SECOND EDITION, REVISED AND ENLARGED

BY

DAVID LEONARD BARNES, A.M., C.E.

MEMBER OF THE AMERICAN SOCIETY OF CIVIL ENGINEERS; MEMBER OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS; ASSOCIATE MEMBER OF THE AMERICAN RAILWAY MASTER MECHANICS ASSOCIATION; ASSOCIATE MEMBER OF THE MASTER CAR BUILDERS ASSOCIATION, ETC.

CHICAGO

THE RAILWAY AGE AND NORTHWESTERN RAILROADER 1893

LONDON: KEGAN PAUL, TRENCH, TRÜBNER & CO., L^{TD.} PATERNOSTER HOUSE, CHARING CROSS ROAD.

CHAPTER I.

ELEMENTARY INDICATOR CARDS.

ARTICLE				PAGE
I. Types of Compound Locomotives Commonly Used.	-	-		2
2. Receiver Type of Elementary Indicator Cards.	-	-	-	2
3. Non-Receiver Type of Elementary Indicator Card.	-	-	-	4

CHAPTER II.

CLEARANCE, COMPRESSION. AND CONSTRUCTION OF THE EXPANSION CURVE.

	01															
4.	Clearance.	-	-	-	-	-	-	-		-	-		-		-	9
5.	Construction	of	the Ex	pans	ion C	urve.		-	-	-		-		-		10
6.	Compression.		-	-	-	-	-	-		-	-		•		-	II

CHAPTER III.

MEAN EFFECTIVE PRESSURE.

7. Formula for Calculating Mean Effective Pressure	17
8. Difference Between Calculated and Actual Mean Effective Pressure.	18
9. Decrease of Mean Effective Pressure as Speed Increases	19
10. Effect on Draw Bar Pull of Decrease of Mean Effective Pressure as	
Speed Increases	19
II. Increase of Per Cent. of Total Power Consumed by Locomotives and	
Tenders which follows a Decrease of Mean Effective Pressure	
Due to Speed.	20

CHAPTER IV.

DIFFERENCES BETWEEN ELEMENTARY AND ACTUAL INDICATOR CARDS.

12.	Difference Between Apparent and Actual Cut-off	25
13.	Difference Between Actual and Elementary Mean Effective Pres-	
	sures in High-Pressure Cylinder	26
14.	Differences Between Actual and Elementary Mean Effective Pres-	
	sures in Low-Pressure Cylinder	29

ARTICLE 15. Differences Between Actual Work done in Cylinder and the Work	PAGE
shown by Elementary Indicator Cards	31
16. Indicator Cards in Practice	- 32
17. Drop in Pressure During Admission, High-Pressure Cylinder	33
18. Rise in Pressure During Admission, Low-Pressure Cylinder	- 33
19. Effect of Speed on Shape of Indicator Cards	35

CHAPTER V.

EFFECT OF CHANGING THE POINT OF CUT-OFF-PRESSURE IN THE RECEIVER.

20.	Effect of Changing Cut-off in Elementary Engine	38
21.	Effect of a Change of Cut-off on the Receiver Pressure in an Ele-	
	mentary Engine	40
22.	Equalization of Work in the High and Low-Pressure Cylinders of a	
	Receiver Compound	42
23.	Equalization of Work in the High and Low-Pressure Cylinders of a	
	Non-Receiver Compound.	43
24.	Conclusions About Equalization of Work in High and Low-Pressure	
	Cylinders	44
25.	Pressure in the Receiver	44
26.	Loss Due to Drop of Pressure in Receiver	47

CHAPTER VI.

COMBINED INDICATOR CARDS AND WEIGHT OF STEAM USED PER STROKE.

27.	Combined Diagram, Receiver Type	-	48
28.	The Rectangular Hyperbola as a Reference Curve,		49
29.	Location of Rectangular Hyperbola for Reference	-	51
30.	Weight of Steam Used per Stroke		51
31.	Weight of Steam Retained in Cylinder at End of Compression.	-	52
32.	Limitations of Combined Diagrams		53
33.	Re-Evaporation in Receiver	-	54
34.	Condensation in Receiver		54
35.	What is Shown by Reference Curve on Combined Diagrams	-	55
36.	Ideal Combined Diagram		55
37.	Combined Diagram from Non-Receiver or Woolf Type	-	57
38.	Method of Combining Indicator Cards from Non-Receiver Type.		58
39.	Losses Shown by Combined Diagram from Non-Receiver Type.	-	61
40.	Correct Area of Combined Diagram, Non-Receiver Type		63
41.	Reference Curve for Combined Diagram, Non-Receiver Type.	-	63
42.	Weight of Steam per Stroke		64
43.	Other Reference Curves for Combined Diagrams	-	65
44.	Weight of Steam per Stroke, Various Compound Locomotives		66

CHAPTER VII.

TOTAL EXPANSION. RATIO OF CYLINDERS.

IOTAL EXTANSION. RATIO OF CILINDERS.	
ARTICLE PA	GE
45. Total Expansion from Elementary Indicator Cards	69
46. Total Expansion from Actual Indicator Cards	69
47. Ratio of Cylinders, Elementary Formulas for	72
48. Ratio of Cylinders as Affected by Maximum Width of Locomotive.	72
49. Ratios of Cylinders Commonly Used	73
50. Ratio of Cylinders as Affecting Equalization of Power in Two-	
Cylinder Receiver Compounds.	74
51. Ratio of Cylinders and Equalization of Power in Non-Receiver	
Compounds	75.
52. Ratio of Cylinder Volumes to the Work to be Done	76

CHAPTER VIII.

RECEIVER CAPACITY, RE-HEATING AND SEQUENCE OF CRANKS.

53.	Receiver Capacity.	-	-	-		-		-	-	-		-		-	80
54.	Re-Heating and Steam]	acke	ets.	-	-		-	-		-	-		-		80
55.	Smoke Box Temperature	s.	-	-		-		-	-	P		-		-	82
56.	Sequence of Cranks	-		-	-		-	-		-	-		-		83

CHAPTER IX.

MAXIMUM STARTING POWER OF LOCOMOTIVES.

57.	Starting with Close Coupled Cars and with Free Slack	84
58.	Starting of Two-Cylinder Receiver Compounds Without an Inde-	
	pendent Exhaust for the High-Pressure Cylinder	84
59.	Starting of Two-Cylinder Receiver Compounds with Independent	
	Exhaust for High-Pressure Cylinder	85
60.	Starting of Four-Cylinder Two-Crank Receiver and Non-Receiver	
	Compounds	85
61.	Starting of Four-Cylinder Four-Crank Compounds with Receivers	86
62.	Starting and Hauling Power of Single Expansion Locomotives	86
63.	Graphical Representation of Hauling Power	87
64.	Starting Power with Mallet's System and other Non-Automatic	
	Starting Gears	90
65.	Starting Power with Worsdell, von Borries and other Automatic	
	Starting Gears	91
66.	Starting Power with the Lindner system	94
	Starting Power of Three-Cylinder Three-Crank Compounds	95
68.	Variation of Hauling Power with Four-Cylinder Two-Crank Receiver	
	and Non-Receiver Compounds	95

CHAPTER X.

CONDENSATION IN CYLINDERS.

ARTIC	LE									PAGE	
69.	Range of Temperature	-	-	-	-	-	-	-	-	97	
70.	Need of Covering Hot Surfa	aces	to Pre	vent	Radi	ation.		-	- `	97	
71.	Condensation, Leakage of V	alve	s and l	Re-En	apor	ation	as D	eterm	ined		
	from Indicator Cards.		-	-	-	-	-	-	-	98	
72.	Examples of Determination	n of	Cond	lensat	ion,	Leak	age,	and	Re-		
	Evaporation from Variou	s In	dicato	r Caro	ls.	-	-	-	-	102	

CHAPTER XI.

THE VALVE GEAR ADJUSTMENTS.

73.	Mallet's S	ystem of Cut-	Off	Adjust	tmer	ıt.		-	-		-	-	106
74.	Chicago, I	Burlington &	Qui	ncy Sys	stem				-	-	-		108
75.	Heintzelm	an System.	-	-	-	-	-	-	-		-	-	109
76.	The Roge	rs Locomotive	W	orks L	ink i	Hang	er Ad	just	ment.	-	-		III
76a	.Different	Adjustments	of	Cut-Of	fs th	at h	ave be	een	Used	for	Cor	m-	
	pound	Locomotives.	-	-	-	-	-		-		-	-	TTT

CHAPTER XII.

MAIN VALVES.

77.	Lap, Travel, and Size of Ports.	-	-	-	-	-		-	-	122
78.	Piston Valves	-	-	-		-			-	122
79.	Some Effects of Inadequate Valve	Moti	ons.	-	-	-		-	-	123
80.	Effect of Long Valve Travel and I	nside	Clean	rance	or	Neg	ativ	ve L	ap.	124
81.	Conclusions about Main Valve Din	nensio	ons.	-		-	-			130

CHAPTER XIII.

STEAM PASSAGES-ACTION OF EXHAUST.

82.	Size of Steam Passages and Loss Due to Wire-Drawing.		-	-	132
83.	Effect of Exhaust on Fire and on Back Pressure	-	-		135

CHAPTER XIV.

EFFECT OF HEAVY RECIPROCATING PARTS.

84.	Weight of Reciprocating Parts	139
85.	Advantage of Large Drivers	140
86.	Counterbalancing of Reciprocating Parts	140
87.	Marine Practice in Counterbalancing	140
88.	Effect of Decreasing Weight of Reciprocating Parts and Increasing	
	Diameter of Drivers.	144
89.	Distribution of Centrifugal Tendency of Counterbalance over the	
	Track.	144

CHAPTER XV.

DESCRIPTION OF TWO-CYLINDER RECEIVER COMPOUNDS, WITH AUTO-	
MATIC INTERCEPTING VALVE STARTING GEARS, AND WITHOUT	
SEPARATE EXHAUST FOR HIGH-PRESSURE CYLINDER AT STARTING.	
ARTICLE	PAGE
90. The von Borries System in 1889	147
91. The von Borries System as used on the Jura, Berne-Lucerne Railway.	150
92. A Modification of the von Borries System	151
93. Recent Changes in the von Borries System	153
94. The Worsdell System.	153
95. A Modification of the Worsdell System	155
96. The Schenectady Locomotive Works (Pitkin) System	157
97. A Modification of the Schenectady Locomotive Works (Pitkin)	
System.	160
98. The Dean System	165
99. A Modification of the Dean System	165
100. The Brooks Locomotive Works (Player) System	169
101. The Rogers Locomotive Works System	171
102. The Baldwin Locomotive Works System	178

CHAPTER XVI.

DESCRIPTION OF TWO-CYLINDER RECEIVER COMPOUNDS, WITH AUTO-	
MATIC STARTING GEAR AND WITHOUT SEPARATE EXHAUST FOR	
HIGH-PRESSURE CYLINDER AT STARTING, AND WITHOUT INTER-	
CEPTING VALVE. THE LINDNER SYSTEM; THE COOKE LOCOMOTIVE	
WORKS SYSTEM; THE GÖLSDORF (AUSTRIAN) SYSTEM.	
	0

103.	The Lindner System.		-	-		-	-	-	-	181
104.	A Modification of the	Lindner	System.	-	-	-		-	-	184
105.	The Lindner System	as Used	on the	Saxo	n Sta	te F	ailro	ad;	The	
	Meyer-Lindner Du									185
106.	The Lindner System of	on the Ch	icago, B	urling	ton &	Qui	incy 1	Railı	road.	185
107.	The Lindner System of	on the Pe	nnsylvar	ia Ra	ilroad	ł.	-	-	-	188
108.	The Cooke Locomotiv	ve Works	System.	-	-			-	-	192
109.	The Gölsdorf (Austria	n) Syster	n	-		-	-	-	-	194

CHAPTER XVII.

DESCRIPTION	OF	TWO-CYI	LINDER	RECI	EIVER	COM	POUNI	os, w	ITH	INTE	2-	
CEPTING	VAL	VE, AND	WITH	SEPA	RATE	EXH	AUST	FOR	HIG	H-PRE	s-	
SURE CY	LIND	ER AT S'	TARTIN	G.								
TIO. The Mal	let S	vstem.	-	- 1	-	-	-	-	-	-	-	196

									/
III.	The Early Form of the Mallet System.	-					-		199
112.	Preliminary Work of Mallet	-	-	-	-	-		-	201
113.	Rhode Island Locomotive Works (Batch	hello	r) Sys	stem.		-	-		202

XII

ARIIC	LE											PAGE
114.	The 1	Richmo	nd [*] Locomotive	Works	(M	ellin)	Syste	m.	-	-	-	205
115.	The]	Pittsbur	gh Locomotive	Works	(Co	olvin)	Syster	m.	-	-	-	208
116.	von I	Borries'	Latest System.	-	-	-	-	-	-	-	-	209

DACE

CHAPTER XVIII.

DESCRIPTION OF FOUR-CYLINDER NON-RECEIVER COMPOUNDS, "CONTIN-										
UOUS" EXPANSION OR WOOLF TYPE, VAUCLAIN AND NON-RECEIVER										
TANDEM TYPES.										
117. The Dunbar System.	211									
118. The Du Bousquet (Woolf) System on the Northern Railway of										
France	211									
119. Indicator Cards from the Du Bousquet (Woolf) Compound	213									
120. Baldwin Locomotive Works (Vauclain) System	215									
121. Distribution of Pressure on Pistons	228									
122. Advantages Claimed for the Baldwin Locomotive Works (Vauclain)										
System	232									
123. The Johnstone System on the Mexican Central Railway	233									

CHAPTER XIX.

DESCRIPTION OF FOUR-CYLINDER, TWO-CRANK RECEIVER COM-POUNDS—TANDEM RECEIVER TYPES.

124. Tandem Compounds on the Hungarian State Railway	235
125. Tandem Compounds on the Southwestern Railways of Russia.	237 .
126. Indicator Cards from Tandem Compounds on the Southwestern	
Railways of Russia.	238
127. The Brooks Tandem System.	239

CHAPTER XX.

DESCRIPTION OF THREE AND FOUR-CRANK COMPOUNDS.

128.	Webb System; Express Locomotives without Parallel Rods	244
129.	Webb System; Freight Locomotives with Parallel Rods	245
130.	Webb System on Pennsylvania Railroad	245
131.	Three-Cylinder System Used on the Northern Railways of France.	246
132.	Valve Gear for Three-Cylinder Compound on Northern Railways of	
	France	247
133.	Summary of Three and Four-Crank Compounds	248
134.	Miscellaneous Designs of Compounds that have Not been Put in	
	Service.	248

CHAPTER XXI.

SUMMARY ABOUT STARTING GEARS.

135. Automatic Starting Gears with Intercepting Valves. - - - 249

ARTICLE 136. Automatic Starting Gears Without Intercepting Valves	PAGE 251
137. Non-Automatic Gears With Intercepting Valves and With Separa	ate
Exhausts for the High-Pressure Cylinders	- 251
138. Starting Gears for Four-Cylinder Compounds	252

CHAPTER XXII.

REASONS FOR ECONOMY IN COMPOUND LOCOMOTIVES.

139.	Possibilities of Savings.	254
140.	Saving by Greater Expansion	255
141.	Saving by Reduction of Condensation	256
142.	Saving by more Complete Combustion	256
143.	Saving in Fast Express and Passenger Service	257
144.	Saving in Slow Grade Work and in Freight and Suburban Service.	257
145.	How Saving is Affected by the Price of Fuel and Rate of Combustion.	258
146.	Cost of Repairs	262
147.	Methods of Operating to Gain Economy	264

CHAPTER XXIII.

SELECTION OF TYPE AND DETAILS OF DESIGN BEST ADAPTED FOR A GIVEN SERVICE.

148.	Four-Cylinder Four-Crank Types	269
149.	Three-Cylinder Three-Crank Types	270
150.	Four-Cylinder Tandem Two-Crank Types	270
151.	Four-Cylinder Non-Tandem Two-Crank Types, With and Without	
	Receivers	272
152.	Two-Cylinder Two-Crank Receiver Types	275
153.	In General About a Selection of a Suitable Design	277

APPENDIX.

A. Example of	Calculation	for Meas	n Effective	Pressure	during	One	
Stroke.						-	281
B. Example of (Calculation fo	or Mean E	ffective Pres	ssure durin	g Expan	sion.	281
C. Example of (Calculation fo	or Pressure	e in the Rec	eiver	- /	-	281
D. Final Pressu	re; Total Ex	pansion.				-	281
E. Drop in Pres	sure in Rece	iver				-	282
F. Mean Effecti	ve Pressure;	Equivaler	nt in One C	ylinder.		-	282
G. Example of	Calculation f	or Mean	Effective Pr	essure who	en Clear	ance	
is taken in	to Account.				-	-	283
H. Derivation o	f Formula fo	r Tractive	Force.		/	-	283
I. Some further	Discussion	of Three-	Cylinder, T	hree-Crank	c Compo	unds.	284

J. Example of Modification of Elementary Indicator Cards to Approxi-	PAGE
J. Example of modification of Elementary indicator Cards to Approxi-	
mate to Actual Cards for Non-Receiver Compounds	292
K. Some Further Discussion of Four-Cylinder Receiver Compounds	293
L. Diagram of Turning Moments of a Lindner Two-Cylinder Receiver	
Compound	299
M. Some Tests of Compound Locomotives in the United States. (Table	
I I.)	301
N. Reported Savings of Compound Locomotives in the United States.	
(Table H H.)	302
O. Formulas for Expansion Curve	303
P. Formula for Inertia of Reciprocating Parts	303
Q. Comparative Cylinder Capacities of Compound Locomotives.	
(Table L.)	305
R. Dimensions of Some of the more Prominent Compound Locomotives	
that have been Put into Actual Service, Chiefly in the United States.	
(Table C C.)	307
Glossary	311
Index	315

xiv