ACTUALITÉS SCIENTIFIQUES ET INDUSTRIELLES 1072

THERMODYNAMIQUE

DE LA
TURBINE A GAZ

PAR

Paul CHAMBADAL

Ingénieur - Docteur

Lauréat de la Société des Ingénieurs Civils de France
et du Prix International Boulvin
Ingénieur à la Direction des Etudes et Recherches
d'Electricité de France

Préface de C. MONTEIL Directeur honoraire de l'Ecole Centrale

PARIS HERMANN & Cio, ÉDITEURS

6, Rue de la Sorbonne, 6

1949

TABLE DES MATIÉRES

	-
Préface	Pages 3
Avant-propos	0
	7
CHAPITRE I	
Le moteur, le fluide et le cycle thermique	
1. — Généralités	9
2. — La turbo-machine	10
3. — La production d'énergie à l'aide d'un gaz permanent	12
4. — Le cycle thermique	16
CHAPITRE II	
Le rendement des turbo-machines multicellulaires	
I a coefficient de michanffere	0.0
5. — Le coefficient de réchauffage	25
 La détente et la compression d'un gaz dans une turbo-machine à nombre infini de cellules	32
A) La détente	100
B) La compression	32
7. — Formules d'interpolation	41
A) Le coefficient de réchaussage relatif	41
B) Formule d'interpolation pour la détente	46
C) Formule d'interpolation pour la compression	49
D) Utilisation des résultats obtenus	51
8. — La similitude thermodynamique des turbo-machines	54
Т,	
A) L'influence du rapport T ₁ sur le rendement des turbo-	
machines	54
B) Cas d'une cellule de turbine	56
C) Cas d'une cellule de compresseur	63
CHAPITRE III	
Les deux aspects du rendement des machines thermiques	
9. — Le rendement propre et le rendement total d'une machine ther-	1
	0.8
10. — Le rendement total d'une turbine	73

TABLE DES MATIÈRES	313
A) Utilisation de l'énergie des gaz d'échappement pour la	
production de travail	70
	73
B) Utilisation de l'énergie des gaz d'échappement dans un	
échangeur thermique	77
11. — Le rendement total d'un compresseur	79
	7,5
A) Détente de l'air comprimé sans un échange de chaleur	
préalable	80
B) Compression sans refroidissement suivie d'un échange de	
chaleur	81
CHAPITRE IV	
La compression de l'air	
12. — La compression sans réfrigération	86
13. — La compression avec réfrigération	94
A) Cas d'une réfrigération continue	94
B) Cas d'une réfrigération fractionnée	99
A/ I o fonctionnement entimum du compresseur d'air deserves in-	
14. — Le fonctionnement optimum du compresseur d'air dans une ins-	407
tallation de turbine à gaz	104
CHAPITRE V	
Y	
Le cycle sans réchauffage intermédiaire ni récupération	
15. — Généralités	116
16. — Compression adiabatique	119
17. — Compression avec une réfrigération uniforme	126
18. — Compression avec une réfrigération rationnelle	133
CILL DIMPE IVI	
CHAPITRE VI	
Le cycle à réchauffage intermédiaire du fluide moteur	
19. — Compression adiabatique	139
20. — Compression avec une réfrigération uniforme	151
21. — Compression avec une réfrigération rationnelle	
	100
CHAPITRE VII	
Le cycle à récupération de la chaleur des gaz d'échappement	nt
22. — Généralités	161
23. — Compression adiabatique	163
24. — Compression avec une réfrigération uniforme	168
25. — Compression avec une réfrigération rationnelle	170
26. — Influence de l'efficacité de l'échangeur	175

CHAPITRE VIII

Le cycle à réchauffage intermédiaire et récupération
27. — Compression adiabatique
29. — Compression avec une réfrigération rationnelle
30. — Influence de l'efficacité de l'échangeur
31. — Comparaison avec un cycle à réfrigération et réchauffage uniformes
10111105
CHAPITRE IX
Le cycle à basse pression
32. — L'utilisation de la turbine à gaz pour la récupération de chaleurs perdues
33. — La combinaison du cycle de la turbine à gaz avec un cycle à basse
pression
CHAPITRE X
La combustion sans excès d'air
34. — Le maximum d'énergie mécanique pouvant être fournie par la
combustion
35. — Cycles avec combustion à la pression atmosphérique
36. — Cycles avec échappement à la pression atmosphérique
57. — Remarques et concuasions
CHAPITRE XI
Les circuits
38. — Le circuit ouvert
39. — Le circuit fermé
40. — Les circuits mixtes
. CHAPITRE XII
Les combinaisons du cycle de la turbine à gaz
avec d'autres cycles thermique
41. — Combinaison avec le cycle du moteur Diesel
A) Cas d'une turbine à condensation
B) Cas d'une turbine à contre-pression
43. — Combinaison simultanée avec le cycle du moteur Diesel et celui
de la vapeur d'eau

TABLE DES MATIÈRES

315

CHAPITRE XIII

L'utilisation	de	la	turbine	e i	h s	gaz	pour	la	production	simultanée
	de	ti	ravail e	t	de	e ch	aleur	ou	de froid	

44. — Production simultanée de travail et de chaleur	281
45. — Production simultanée de travail et de froid	292
Annexe I. — Intervention, dans l'étude du cycle thermique de la turbine à gaz, de l'efficacité des réfrigérants d'air et des pertes	
de charge dans les circuits de l'air et des gaz	298
Annexe II. — Diagramme enthalpie-entropie de la turbine à gaz	306